Fast Algorithms for Coevolving Time Series Mining

نویسندگان

  • Lei Li
  • Christos Faloutsos
چکیده

In this paper, we present fast algorithms on mining coevolving time series, with or with out missing values. Our algorithms could mine meaningful patterns effectively and efficiently. With those patterns, our algorithms can do forecasting, compression, and segmentation. Furthermore, we apply our algorithm to solve practical problems including occlusions in motion capture, and generating natural human motions by stitching low-effort motions. We also propose a parallel learning algorithm for LDS to fully utilize the power of multicore/multiprocessors, which will serve as corner stone of many applications and algorithms for time series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Mining of a Network of Coevolving Time Series

Coevolving multiple time series are ubiquitous and naturally appear in a variety of high-impact applications, ranging from environmental monitoring, computer network traffic monitoring, motion capture, to physiological signal in health care and many more. In many scenarios, the multiple time series data is often accompanied by some contextual information in the form of networks. In this paper, ...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Modeling and prediction of time-series of monthly copper prices

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010